Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase.
نویسندگان
چکیده
Reactive oxygen species (ROS) modulate intracellular signaling but are also responsible for neuronal damage in pathological states. Microglia, the resident CNS macrophages, are prominent sources of ROS through expression of the phagocyte oxidase which catalytic subunit Nox2 generates superoxide ion (O2(.-)). Here we show that microglia also express Nox1 and other components of nonphagocyte NADPH oxidases, including p22(phox), NOXO1, NOXA1, and Rac1/2. The subcellular distribution and functions of Nox1 were determined by blocking Nox activity with diphenylene iodonium or apocynin, and by silencing the Nox1 gene in microglia purified from wild-type (WT) or Nox2-KO mice. [Nox1-p22(phox)] dimers localized in intracellular compartments are recruited to phagosome membranes during microglial phagocytosis of zymosan, and Nox1 produces O2(.-) in zymosan-loaded phagosomes. In microglia activated with lipopolysaccharide (LPS), Nox1 produces O2(.-), which enhances cell expression of inducible nitric oxide synthase and secretion of interleukin-1beta. Comparisons of microglia purified from WT, Nox2-KO, or Nox1-KO mice indicate that both Nox1 and Nox2 are required to optimize microglial production of nitric oxide. By injecting LPS in the striatum of WT and Nox1-KO mice, we show that Nox1 also enhances microglial production of cytotoxic nitrite species and promotes loss of presynaptic proteins in striatal neurons. These results demonstrate the functional expression of Nox1 in resident CNS phagocytes, which can promote production of neurotoxic compounds during neuroinflammation. Our study also shows that Nox1- and Nox2-dependent oxidases play distinct roles in microglial activation and that Nox1 is a possible target for the treatment of neuroinflammatory states.
منابع مشابه
Neurobiology of Disease Neurotoxic Activation of Microglia Is Promoted by a Nox1- Dependent NADPH Oxidase
Cyril Chéret,1,2 Annie Gervais,1,2 Aurélia Lelli,1,2 Catherine Colin,1,2 Lahouari Amar,2,3 Philippe Ravassard,2,3 Jacques Mallet,2,3 Ana Cumano,4 Karl-Heinz Krause,5 and Michel Mallat1,2 1Inserm, Unité Mixte de Recherche (UMR) 711, Institut Fédératif de Recherche 70, 75013 Paris, France, 2Université Pierre et Marie Curie Paris 06, 75005 Paris, France, 3Centre National de la Recherche Scientifiq...
متن کاملExpression of ALS-linked SOD1 mutant increases the neurotoxic potential of microglia via TLR2
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease, in which activated microglia overexpressing ALS-linked SOD1 mutants (mSOD1) are known to contribute to neuronal death. However, it is unclear how mSOD1 expression affects micoglial activation and subsequently damage neurons. In this study, we created mSOD1overexpressing BV-2 microglial cell lines. Following TLR2, but not...
متن کاملSOD1 mutant increases microglial neurotoxicity - 1 - Expression of ALS-linked SOD1 mutant increases the neurotoxic potential of microglia via TLR2
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease, in which activated microglia overexpressing ALS-linked SOD1 mutants (mSOD1) are known to contribute to neuronal death. However, it is unclear how mSOD1 expression affects micoglial activation and subsequently damage neurons. In this study, we created mSOD1overexpressing BV-2 microglial cell lines. Following TLR2, but not...
متن کاملEssential role of ATF-1 in induction of NOX1, a catalytic subunit of NADPH oxidase: involvement of mitochondrial respiratory chain.
NADPH oxidase is the major source of superoxide production in cardiovascular tissues. We and others reported that PG (prostaglandin) F2alpha, PDGF (platelet-derived growth factor) and angiotensin II cause hypertrophy of vascular smooth muscle cells by induction of NOX1 (NADPH oxidase 1), a catalytic subunit of NADPH oxidase. We found DPI (diphenylene iodonium), an inhibitor of flavoproteins, in...
متن کاملActivation of NADPH oxidase 1 increases intracellular calcium and migration of smooth muscle cells.
Redox-dependent migration and proliferation of vascular smooth muscle cells (SMCs) are central events in the development of vascular proliferative diseases; however, the underlying intracellular signaling mechanisms are not fully understood. We tested the hypothesis that activation of Nox1 NADPH oxidase modulates intracellular calcium ([Ca(2+)](i)) levels. Using cultured SMCs from wild-type and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 46 شماره
صفحات -
تاریخ انتشار 2008